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Distortion of the stagnation-point flow due to
cross-stream vorticity in the external flow

By M. R. DHANAK! AND J. T. STUART?

! Department of Ocean Engineering, Florida Atlantic University,
Boca Raton, FL 33431, USA
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The structure of the stagnation-point flow in the presence of weak steady cross-stream
vorticity in the external flow is investigated. A specific case of the two-dimensional
basic forward stagnation-point flow past a circular cylinder is considered with the
external three-dimensional vortical disturbance taken to be periodic in the spanwise
direction with a wavelength \* < Ay = 7D /(Rep)'/?, where D is the diameter of
the cylinder and Rep is the flow Reynolds number. It is shown that the presence
of weak but finite streamwise vorticity, with A* < A} in the external flow, can be
supported by the flow in the stagnation zone, leading to a substructure of counter-
rotating streamwise eddies in the boundary layer. The magnitude of the streamwise
vorticity in the boundary layer is found to match with that in the external flow for
A* < Ay; it is of much smaller order for A* > A%, which corresponds to a disturbance
of the type considered by Hadmmerlin (1955).
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1. Introduction

The importance of the role played by the presence of upstream grid turbulence
in transition experiments involving flow over bluff bodies or on a flat plate with
rounded leading edge is well recognized. Although low turbulence levels may be
achieved in the upstream flow through careful flow management, there is a concern
that any vorticity in the free stream may be sufficiently amplified in the vicinity
of the forward stagnation zone of the body to bear a greater degree of free-stream
influence on the process of transition than anticipated. It is therefore of interest to
examine the flow structure in the stagnation zone in the presence of weak vorticity
in the free stream. In an experimental study of amplification of streamwise vorticity
by stagnation-point flow, Sadeh et al. (1980, 1970) considered impingement of cross-
stream vorticity on to a cylinder which is aligned with its axis normal to both the
streamwise direction and to the direction of the oncoming vorticity. The configuration
considered was similar to that depicted in figure 1. They performed experiments
with spanwise wavelengths in the range 4-40 mm, identifying the existence of scales
which are amplified by the flow in the stagnation zone and observing an associated
persistent substructure consisting of a coherent array of eddies in the stagnation
zone. In particular, they delineated a spanwise scale A}y = 7D/ Re}g/2 (= 5.6 mm in
their case), where D is the diameter of the cylinder and Rep is the flow Reynolds
number, such that the dynamics of scales larger than A}, are dominantly governed
by inviscid dynamics involving vortex stretching and vorticity amplification, while
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(b)

Figure 1. (a) Flow past a circular cylinder, and (b) stagnation-point flow.

scales smaller than A}, are governed by viscous effects associated with the flow in
the stagnation region. This is consistent with other experimental investigations, all
of which report the appearance, in the two-dimensional stagnation flow region, of
streamwise vortices of the scale of the boundary-layer thickness. Further relevant
experimental and theoretical papers include those of Sutera et al. (1963), Sutera
(1965), Kestin & Wood (1970) and Bearman (1972).

In this paper, the structure of the flow in the stagnation zone of a bluff body
in the presence of weak steady streamwise vorticity is examined. The vortical flow
corresponds to a Gortler-type disturbance (Gortler 1955) to the stagnation zone
flow, varying in the spanwise direction on a length scale A* < A% . This is in contrast
to the work of Goldstein et al. (1992) who considered the case of external vortical
disturbance to flow over a flat plate of rounded leading edge; in their case \* = O(D)
so that the dynamics of vorticity are governed by inviscid flow and they were able
to treat the stagnation region using rapid-distortion theory. On the other hand, the
influence of viscosity on turbulent flow near a stagnation-point flow was considered
by Goldstein (1984), although the details and the approach of that paper are rather
different from those described here.

Gortler-type disturbances to the stagnation flow region have received considerable
attention in the literature (Hammerlin 1955; Wilson & Gladwell 1978; Brattkus &
Davis 1991) in the case where the disturbances originate in the boundary layer and
decay exponentially away from the rigid wall. These occur for a wavelength \* > A%,
so that the wavenumber is less than 1 in Hammerlin’s notation. However, there
exist eigensolutions to the governing disturbance vorticity equations, corresponding
to other spanwise wavelengths, \* < A} (eigenvalues), which grow algebraically
away from the wall and it is shown here that these match with the external flow
involving weak steady cross-stream vorticity. This leads to the suggestion that the
flow in the stagnation zone will support the presence in the external stream of weak,
but amplified, cross-stream vorticity of spanwise wavelengths A* < \%, consistent
with experimental observation; the corresponding boundary-layer flow consists of a
substructure of counter-rotating streamwise eddies. The relationship between the
free-stream vorticity and the boundary-layer vorticity is determined and a matching
is achieved. The solutions obtained provide useful upstream boundary conditions for
numerical simulations which involve following development of streamwise vorticity
in the boundary layer on a blunt body or a flat plate with rounded leading edge in

Phil. Trans. R. Soc. Lond. A (1995)
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the presence of disturbances in the external flow. It is believed that the solutions
presented here are consistent with the experimental observations of Sadeh & Brauer
(1980) at wavelengths below and above A},.

Specifically, the stagnation-point flow of an incompressible fluid of uniform density,
modified by the presence of small streamwise vorticity O(e) in the external flow, is
considered. Cartesian coordinates (x*,y*,2*), as shown in figure 1b, are defined,
with the stagnation line along 2* = y* = 0 and position, time, fluid velocity and
vorticity are non-dimensionalized with respect to typical length (I; [ = b in figure
la) and velocity (U) scales associated with the external flow as z* = Iz, t* = [U " 't,
u* = Uu(z,y,2), w* = Ul"'w. The flow Reynolds number, considered to be large, is
given by Re = Ul/v, where v is the kinematic viscosity. The streamwise vorticity is
periodic in the spanwise direction, with a characteristic wavelength 27(2Re)~'/2/3
for some (. B may be considered to be an eigenvalue for neutral disturbances to the
basic flow. In view of this scaling of the spanwise variation of flow, it is convenient
to introduce a stretched variable:

Z = (2Re)?2. (1.1)

The external flow in the vicinity of the stagnation flow is obtained in §2 and
is matched to the inner viscous-flow solution obtained in §3 to determine the flow
structure. A Reynolds number may seem anomalous here, but it is necessary for any
extensions along the body beyond the stagnation region; for a discussion see Stuart

(1963).
2. External flow

For definiteness, the external flow past a cylinder of unit radius is considered,
although the analysis can be extended to consider the forward stagnation region
of any two-dimensional body including a flat plate with rounded leading edge. It is
convenient first to express the external problem in terms of the more usual coordinate
system (&1,&2, 2), shown in figure la with the origin at the centre of the cylinder.
Thus, £ = —1 — y and & = z. The external velocity U is taken to be of the form

U = (Ug(&1,8), Un2(1,€2),0) + €U, (&1,&2, Z) + O(€%)
0V, oY,
= [ Uy = T Tae 0
o6, 02 9,
Wo(&1,&2) is the stream function for the basic flow, which is irrotational. The O(e)
term in (2.1) represents the vortical contribution together with a potential flow re-

quired to satisfy the boundary condition at the surface of the cylinder. The vorticity
in the external region is given by 2 = ef2, + O(e?), where, in the (£, &, 2) frame,

02, =V xU, = (1(£,8)sin(B82), h2(&1, &) sin(82), (13(61,62) cos(BZ)). (2.2)

If we substitute for §2 in the vorticity equation, then to leading order in € and Re,
we have

Wlth U(n WO = 52(1 - (612 + 522)—1)' (21)

(9911 6911 6U01 6U01 ) )
U + U, ===+ 0 —26%(h,,
01 651 02 662 11 851 12 862 ﬁ 11
8012 8012 6U02 6U02 )
U + U = ——+ 1 — 2803, 2.3
01 651 02 96, 11 9E, 12 8{2 B (2 ( )
8013 8013 2
U + U = —20°();.
01 861 02 662 ﬁ 13

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

A

/

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

4

TaNsactions | HE ROVAL

SOCIETY

OF

4

OF

Downloaded from rsta.royalsocietypublishing.org
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We consider the case where
3 = O(Re™'?|22), (2.4)

which is consistent with an appropriate initial condition upstream. Thus, to leading
order,

oUy,  0Uyy 0P 0P
{3 cos(BZ) = — =0, and Uy =—, Up=—
13 cos(B82) 9¢, 96, 11 o€, 2= 5
for some potential function @;. Then
24 Ix
On=—-=, =--, 2.5
1= 5, 12 96, (2.5)

where x(&1, &) sin(8Z) = Uys — (2Re)'/2(09,/0Z).
On substituting (2.5) in the first or second of equations (2.3), integrating with
respect to &, or &, respectively, and applying conditions for £&; — —oo, we obtain

Ox ox 2
U=+ Up— = -2 . 2.6
01351 02 B¢, Bx (2.6)

A solution to this linear equation for y may be found by the method of characteristics.
The characteristics are given by

Wo(fufz) =,

for constant values of ¢, and by

& _opdg
/ Uo1(&1,&2(&1, ) = In x + const.

Thus, the solution of (2.6) is

B &1 d&
_ _ 2
X=X { 20 / Uoi(61,62(61,¢)) ]’ 27)

where X is a function of ¥, and c is replaced by ¥, after the integration; on matching
with the viscous solution obtained in §3, we find that % is a constant.

In the vicinity of the forward stagnation line, £&; = —1, & = 0, we have in terms
of z (=&) and y (= —1 — &) variables, for |y|, |z| < 1,

Uy = z(2y + 2° — 3y* + O(a%y)),

so that, from (2.1),
1 3 322 xz? zt
U ! = V) O y Ty T |
Ty T Ty T (y y y3>
Here we limit consideration to the leading-order stagnation-point flow, approximating
Usi' by the leading term in the expansion, so that, from (2.7),
_ 2
x=xy",

and match this with an appropriate leading-order solution for the inner problem
in §3. Thus, in view of (2.2) and (2.5) and on using y — y, = y — 8§, where § =
0.6479(2Re)~1/? is the displacement thickness, we have that the vorticity in the

Phil. Trans. R. Soc. Lond. A (1995)
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external flow in the vicinity of the stagnation point is given, in the (z,y, z) frame
(with £215 corresponding to the z-component of vorticity), by

2, ~ (Fxyl ~'sin(82),0,0). (2.8)

A higher-order solution to {2, may be obtained from (2.7) by considering more terms
in the expansion for Uj;' and matching the resulting expression for the vorticity with
a corresponding higher-order solution to the inner problem.

3. Viscous stagnation region

In addition to the variable Z defined in (1), it is convenient to define a stretched
variable 7, for consideration of the flow in the viscous stagnation region, as

n= (2Re)1/2y (3.1)

and take the velocity field in the region to be of the form involving a basic stagnation
flow subject to a perturbation:

u = uy + euy + O(?),
Uy = (2u0(n), 2(2Re)?vo(n), 0), (3.2)
uy = (zuy(n) cos(8Z), (2Re) ™ /?v1(n) cos(BZ), (2Re) ™"/ >wi(n) sin(2)).
Then the vorticity w is given by
w=(0,0,wp3) + ew;, woz = —2z(2Re)"/?uy,
w, = ((18in(BZ), —(2Re)*/?Bzuy sin(BZ), —z(2Re)/?uy’ cos(82)), (3.3)
G =w' + Py,

where a prime denotes differentiation with respect to 7. On substituting these expres-
sions into the equations of motion and, respectively, equating zeroth- and first-order
terms in € to zero, we obtain

Vouy =0, V-u =0, u-Vw = Re V3w, 54)
3.4
uy - Vw, +1u, - Vwy = wy - Vi, +w, - Vg + Re 'V,

subject to the boundary conditions at the rigid surface and in the external stream.
Upon substituting for wos, ug, v, and w, from (3.2-3.3) into (3.4), we, respectively,
obtain

up+ vy =0, wu +v+Pw =0,
(u02)/ + (UOUO/)I _ UO/// — 0,
G" = vo¢i = (vo' + 8%)¢1 =0,

u” — vour” — (2ug + B%)ur = up'vy,

(3.5)

with the corresponding equation associated with the spanwise component of w; given
by the derivative of the last of (3.5).

Phil. Trans. R. Soc. Lond. A (1995)
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Table 1. Asymptotic behaviour of zeta and v for different values of n

n C1 v1

0 Cp ~ do

1 C17a diMa

2 c2(ma’ + 1) de(na® + %)

3 e3(na® + 31a) d3(na” + §7a)
4 ca(na® + 2n4% + 3) da(na* + )
n cn(na” + %n(n—l)na“” +)  da(na™ )

(a) Outer solution
In the outer region 7 > 1, we have

up — 1, vg — —7Na, (3.6)
where 1, = n — 0.6479. Thus, in view of (3.5), ¢; and u; satisfy
!+ MaCt — 1 =0, (3.7)
uf + nuuf — (n+ 3)u; =0, (3.8)
where n = 3% — 1. Furthermore, from (3.3) and (3.5), we have that
v = B = =BG — v, w = —(w +0))/8. (3.9)

Equations (3.7) and (3.8) correspond to Hermite’s equation and have an exponen-
tially decaying solution and an algebraic solution. The latter grows in n, if n > 0
(and is a polynomial if n is an integer), but decays if n < 0. In order to illustrate the
nature of the solutions to these equations, we consider in detail the cases n =0, 1, 2,
corresponding to spanwise wavenumbers 32 = 1,2, 3; this choice implies that ¢; has a
polynomial structure at infinity. Non-integer values may equally be considered with-
out difficulty and would imply a solution with an algebraic structure at infinity. In
general, the differential system constitutes an eigenvalue problem for n, albeit with
a continuous spectrum and an unusual boundary condition that the solution has an
algebraic or, in special cases, a polynomial structure at infinity. We further require
that, to the order of the stagnation-point flow, u; — 0 exponentially as n — oco. The
latter requirement is dictated by the matching procedure. Thus we obtain the results
displayed in table 1.

Here d,, = ¢,/+/(n+ 1) and ¢, are constants to be determined by matching. If we
express the limiting solution for w,, given by (3.3), with ¢; and u, given in table 1,
in terms of y, and compare it with the external limiting expression for {2, given by
(2.8), we obtain that

cn = (n+ 1)X(2Re) /2, (3.10)
The corresponding asymptotic expressions for w; are obtained using w; ~ —v}/f.
With the choice (3.10), the streamwise vorticity in the boundary layer matches that in
the external flow. Matching requires that ¥ be a constant, although this aspect could
change if the solution were continued along the body beyond the stagnation region.
Brattkus & Davis (1991) discuss more general disturbances, the z-wise behaviour

of which can involve a higher power of z than the linear dependence considered in
(3.2).
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Table 2. The values of (1, (i and u’ at the wall for different values of n

n G(0)/en  C1(0)/en  ui(0)/cn

0 —0.794 1.19 —0.032
1 —0.803 1.53 —0.035
2 —-1.074 2.39 —0.047

(b) Inner solution

If we integrate the equation for ug in (3.5) with respect to 7 and use uy — 1 as
1n — 00, we obtain

Uy = f/(77)7 Vo = _f(n)a (311)
where "= +1=0. (3.12)

The equation for streamwise vorticity ¢; in (3.5) becomes
VG- (B = )G =0 (3.13)

and from the first of the equations for u; in (3.5) we have
uf + fuy = 2f" + 52w = "o (3.14)

The boundary conditions to be satisfied at the rigid surface are

f=f=u=vy=w, =v;=0atn=0. (3.15)

As n — o0, (, v; and w; — a polynomial structure of the form given in table 1, while
f' — 1 and u; — 0. We evaluate f, u; and (; in the inner layer subject to these
outer boundary conditions.

Equations (3.12)—(3.14) were integrated using a two-point boundary-value shoot-
ing method and fourth-order Runge-Kutta integration. Integration in 1 was carried
out from 1 = 0 to n = 7., where the value of 1., = 6.19 was found to be adequate;
the value f”(0) = 1.232588 was used in the computation. The values of ¢y, {; and
u} at the wall for different values of n are given in table 2.

The profiles for the velocity contributions f’, uy, v; and wy, and for the streamwise
vorticity ¢; as a function of 7, are shown in figure 2 for three values of 3? (= n + 1);
leading-order solutions in the inner layer are shown for f’ and u;. The appropri-
ate polynomial behaviour for large n, as described in table 1, is apparent from the
figures. It is interesting that {; near n = 0 has opposite sign to that in the outer
flow. This is illustrated further in figure 3, which shows the disturbance streamwise
vorticity contours, given by (;(n)sin 8Z, for the particular case of 8% = 2; other
cases have similar patterns. A plot of the ‘streamlines’ for the disturbance velocity
(v1 cos BZ,w; sin BZ) in the Z —n plane for the case 3% = 2 is shown in figure 4a and
the corresponding projected ‘streamlines’ in the Z — n plane for ¢ = 0.2 are shown
in figure 4b.

4. Conclusion

In this paper, the structure of the stagnation zone flow in the presence of weak
steady cross-stream vorticity in the external stream has been considered for the case
of a spanwise scale of flow variation O(Re~!/2). The solution for the specific case

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 2. Basic flow function f’ (equation 3.11), and perturbation velocity components (b) u1,
(¢) v1, (d) w1 and (e)streamwise vorticity {1 as a function of n for three values of spanwise
wavenumber (3.

3.0
n
1.49789
2.0
1.0 0.299577
-0.29957
0.0’-\r\. .m. —_— N A1

-3.0 -2.0 -1.0 0.0 1.0 2.0 7 3.0
Figure 3. Streamwise disturbance vorticity contours in the n-Z plane.

of flow past a cylinder suggests that the stagnation-point flow will support, in the
external flow, the presence of weak, but amplified, steady cross-stream vorticity with
A < Xy (= 7D/Rep'’?), leading to the existence of a persistent substructure con-
sisting of an array of coherent counter-rotating streamwise eddies in the stagnation
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Figure 4. (a) Disturbance ‘streamlines’ in the n-Z plane and (b) ‘streamlines’ in the n-Z plane
for e = 0.2.

region; this is consistent with experimental observation. For A* < A%, the magnitude
of the streamwise vorticity in the boundary layer matches with that in the external
flow; for A* > A%, which corresponds to a disturbance of the type considered by
Hammerlin (1955), it is of much smaller order.

The results presented here can be related to previous work. As summarized by
Stuart (1963), the existence of velocity fluctuations in the neighbourhood of the
stagnation point of a body has been known since 1928, due to the important work of
Piercy & Richardson (1928, 1930), Schuh (1953) and Kuethe (1958). Investigation of
this phenomena was undertaken by Kestin & Wood (1970), Sutera et al. (1963) and
Sutera (1965) at Brown University, in a separate way by Bearman (1972), and by
Sadeh and his colleagues (1970, 1980). The Brown University group and Sadeh and
his colleagues exposed experimentally the idea that short-wavelength disturbances
(periodic along the span) are intimately related to and connected with perturbations
within the boundary layer, while long-wavelength perturbations are not so related,;
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they delineated a critical wavelength and attempted a theoretical description of the
phenomena.

Earlier, Gortler (1955) and Hammerlin (1955) had devised a theory, related to that
for Taylor and Gortler vortices, which showed that long-wavelength disturbances
(periodic along the span), originating in the stagnation-point boundary layer, decay
in the free stream. This work, associated with the theory of flow instability, was
extended in significant ways by Wilson & Gladwell (1978) and by Brattkus & Davis
(1991). The ideas presented in these papers are consistent with the experimental
observations mentioned above, at least in relation to long-wavelength disturbances.

In the present work, we have considered disturbances which exist in the boundary
layer but grow algebraically to much greater magnitudes outside the boundary layer.
These disturbances have shorter wavelengths and play the role associated with such
modes in the observations: they are intimately related to the interaction between the
boundary layer and the external flow. Thus, our work extends the Gortler-Hammerlin
type of theory (with its significant later extensions) to the case of perturbations which
do not decay at the edge of the boundary layer. Eigenmodes of both long and short
wavelengths are now seen to fit into the picture enunciated by Kestin, Sadeh and
their colleagues.

This work commenced in 1982. It is a pleasure to acknowledge the work of Dr M. E. Gold-

stein (1984), referred to above, for its insights into the problems of potential and viscous flow
interactions.
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